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Abstract

Introduction

We model a possibly curvilinear crack as a collection of fictitious small straight cracks with a particular spatial distribution.
The behavior of the macroscopic crack is then described by the collection of such small cracks in the RVE, see Figure 2. The
proposed phase field is: 𝜓𝜓 𝜺𝜺 𝒖𝒖 ,𝑑𝑑 = 𝑯𝑯 𝛽𝛽 𝜺𝜺 𝑇𝑇 + 1 −𝑯𝑯 𝛽𝛽 𝜺𝜺 𝐶𝐶, where 𝐻𝐻 is the Heaviside function, and 𝛽𝛽 𝜺𝜺 =
1 − 𝜈𝜈 𝜀𝜀𝑦𝑦 + 𝜈𝜈𝜀𝜀𝑥𝑥 switches between the cases in the RVE is in tension or compression, under the given strains 𝜺𝜺, and hence
𝛽𝛽 𝜺𝜺 is called the tension-compression discriminant.

Homogenization & Phase Field Model 
In uniaxial tension test, our model gives a result
similar to Amor’s model [1]. In uniaxial compression
test, our model gives a result similar to Miehe’s
model [5]. In shear test, the crack patterns in our
model and Miehe’s model [5] are more similar and
have a much larger angle. In three-point bending
test, the stiffness of our model is a little bit stiffer
than from Miehe’s model [5], only our model and
Miehe’s model give acceptable results. In through-
crack shear test, only our model and Amor’s model
[1] give reasonable results. Miehe’s model shows a
stiff response which should not appear for a fully
broken plate since it is assumed that there is no
friction between the surface of crack.

Benchmark Tests

We have proposed a homogenization-based phase
field model whose macroscopic constitutive
relationship is fully determined by the
microstructure. The invariant form of our model
shows the feasibility of the three-dimensional
generalization. According to the result of the
numerical examples illustrated in our work, the
proposed homogenization-based phase field model
shows good performance when compared with
existing models, and close results when compared
with the benchmark. Additionally, with a tension-
compression discriminant, our model handle the
mixed load case successfully and give a closer result
to Abaqus reference result compared with other
models.

Conclusions
The prediction of failure mechanisms due to crack
initiation and propagation in solids is of great
significance for engineering applications. Phase field
approached to brittle fracture is based on the
variational energy formulation proposed by Francfort
[1], which takes the Griffith's theory into account.
The phase field modeling of brittle fracture have
shown its advantages on simulating complex fracture
processes including initiation, propagation, branching
and merging of cracks [1,2,4].

Within the models related to Griffith's theory, we
focus on these featuring a tension-compression split.
That is because cracking under compressive load will
lead to unphysical crack propagation patterns
without such kind of split. We define a tension-
compression discriminant to complete such split.
Models incorporating a tension-compression split
have been proposed by Amor [1], Bourdin[2] and
Miehe [4].

We add displacement boundary conditions symmetrically:
𝒖𝒖𝐷𝐷 = −7

3
Δ𝑢𝑢𝒆𝒆𝑥𝑥 + 1

3
Δ𝒆𝒆𝑦𝑦, where Δ𝑢𝑢 = 0.01, 0.02mm.

Our model can be simplified as 𝜎𝜎𝑦𝑦 = 𝜆𝜆 𝜀𝜀𝑥𝑥 + 𝜀𝜀𝑦𝑦 + 2𝜇𝜇𝜀𝜀𝑦𝑦 in
this case, which means it is categorized as compression.
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In the future, we will establish a model with more
complicated microstructures. And we may improve
the efficiency of local phase field evolution.

Future Directions

The phase field method [2] has gained popularity
due to its ability to predict crack nucleation,
propagation, and branching without extra criteria.
This approach works by minimizing a total energy
functional with the displacement field and phase
field (0=intact material, 1=crack) as arguments, and
eliminates the cumbersome geometric tracking.
However, each of the prevailing models [1,5] predicts
a different crack path even under certain simple
loadings. We apply the homogenization theory to
construct a phase field model, which predicts
reasonable crack paths for the three-point bending
test and through-crack shear test. We compare the
prediction of our model with similar ones [6-8].

Figure 1. Comparison of a sharp crack 
and its phase field representation.

Figure 2. Modeling a macroscopic crack as a collection of 
fictious small straight cracks, each in an RVE.

Figure 3. Comparison material behavior 
under tension and compression.

This time we add displacement boundary conditions:
𝒖𝒖𝐷𝐷 = 7

3
Δ𝑢𝑢𝒆𝒆𝑥𝑥 −

1
3
Δ𝒆𝒆𝑦𝑦, where Δ𝑢𝑢 = 0.01, 0.02mm.

Our model can be simplified as 𝜎𝜎𝑦𝑦 = 𝑔𝑔(𝑑𝑑)�
�

𝜆𝜆 𝜀𝜀𝑥𝑥 + 𝜀𝜀𝑦𝑦 +
2𝜇𝜇𝜀𝜀𝑦𝑦 in this case, which means it is categorized as tension.
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Figure 4. Configuration and mesh of the decomposition comparation test 1.
(a) Configuration                                   (b) mesh
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Figure 5. Configuration and mesh of the decomposition comparation test 2.
(a) Configuration                                   (b) mesh

Model SS1 and SS2 were proposed by
Strobl and Seelig [8], Model SK was
proposed by Steinke and Kaliske [6].
Model N is our model and Abaqus
result is the reference result. From
Figure 6 and 7 we can find that the
result of Model N is the closest to
Abaqus result, it can be concluded
the tension-compression discriminant
works well.

Figure 6. Stress – strain curve of test 1. Figure 7. Stress – strain curve of test 1.

Figure 8. Fiber-reinforced composites 
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